A Note on the Kakeya Maximal Operator

نویسندگان

  • Jose A. Barrionuevo
  • JOSE A. BARRIONUEVO
چکیده

In this paper we obtain an upper bound for the L2 norm for maximal operators associated to arbitrary finite sets of directions in R 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on superspecial and maximal curves

In this note we review a simple criterion, due to Ekedahl, for superspecial curves defined over finite fields.Using this we generalize and give some simple proofs for some well-known superspecial curves.

متن کامل

Notes on the Kakeya Maximal Conjecture and Related Problems

We discuss the relation between the restriction conjecture, the Kakeya maximal conjecture and the Kakeya conjecture. We follow [4] and [5] very closely.

متن کامل

The Universal Maximal Operator on Special Classes of Functions

We prove pointwise inequalities for the maximal operator over all the directions in R when acting on l-radial functions and on product functions. From these inequalities we deduce boundedness results on L for p > n; these can be applied to other operators, in particular to the Kakeya maximal operator.

متن کامل

Kakeya Sets and Directional Maximal Operators in the Plane

We completely characterize the boundedness of planar directional maximal operators on L. More precisely, if Ω is a set of directions, we show that MΩ, the maximal operator associated to line segments in the directions Ω, is unbounded on L, for all p < ∞, precisely when Ω admits Kakeya-type sets. In fact, we show that if Ω does not admit Kakeya sets, then Ω is a generalized lacunary set, and hen...

متن کامل

A Recursive Bound for a Kakeya-type Maximal Operator

A (d, k) set is a subset of R containing a translate of every kdimensional plane. Bourgain showed that for 2 + k ≥ d, every (d, k) set has positive Lebesgue measure. We give an L bound for the corresponding maximal operator.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004